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Abstract 

This experimental study evaluated the effectiveness of a research-based intervention, schema-

based instruction (SBI), on students' proportional problem solving. SBI emphasizes the 

underlying mathematical structure of problems, uses schematic diagrams to represent 

information in the problem text, provides explicit problem solving and metacognitive strategy 

instruction, and focuses on the flexible use of multiple solution strategies.	 Eighty-two 

teachers/classrooms with a total of 1,999 seventh-grade students across 50 school districts were 

randomly assigned to a treatment (SBI) or control (business-as-usual) condition. An 

observational measure provided evidence that the SBI intervention was implemented with 

fidelity. Results of multilevel modeling indicated that the SBI group scored on average 

significantly higher than the control group on the posttest and retention test (9 weeks later) and 

also showed significantly more growth in proportional problem solving. There were no treatment 

effects on the Process and Applications subtest of the Group Mathematics Assessment and 

Diagnostic Evaluation. These results demonstrate that SBI can be more effective than the control 

approach in improving students’ proportional problem solving. 

 

KEYWORDS: schema-based instruction, seventh-grade students, proportional problem solving  
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 Effects of a Research-Based Intervention to Improve Seventh-Grade Students’ 

Proportional Problem Solving: A Cluster Randomized Trial  

 There is considerable evidence that as children progress from the elementary grades into 

middle school, the mathematical gains made in elementary school are not matched in later years 

(e.g., National Mathematics Advisory Panel [NMAP], 2008). For example, on the 2013 National 

Assessment of Educational Progress (NAEP), only 35% of U.S. eighth-grade students compared 

to 42% of fourth-grade students were proficient or advanced in their knowledge of mathematics 

(National Center for Education Statistics, 2013a). Although U.S. students’ mathematics scores 

on international assessments have improved over the past decade, data from the Trends in 

International Mathematics and Science Study (TIMSS) showed no measureable difference in 

average U.S. mathematics scores at grade 8 in 2007 and in 2011 (Provasnik, Kastberg, Ferraro, 

Lemanski, Roey, & Jenkins, 2012). Similarly, there were no significant changes in the average 

performance of U.S. 15 year olds in mathematics between 2003 and 2012 on the Program for 

International Student Assessment (PISA; Kelly, Xie, Nord, Jenkins, Chan, & Kastberg, 2013). 

Despite having some of the highest per-pupil expenditures in the world, the percentage of U.S. 

top performers was well below average in mathematics on the PISA, which includes tasks that 

require well-developed thinking and reasoning skills. These findings are cause for concern given 

an increasingly competitive job market, where the demand for mathematics intensive science and 

engineering jobs are outpacing overall job growth three-to-one (NMAP, 2008). Clearly, the need 

for identifying interventions that improve students’ mathematics skills is critical. 

  The goal of the present study was to test a research-based intervention, schema-based 

instruction (SBI), designed to improve students’ proportional reasoning. Although the SBI 

intervention was developed and used extensively to solve arithmetic word problems, recent work 
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on SBI has focused on students’ development of proportional reasoning. Proportional reasoning 

is of primary importance during the upper elementary and middle school grades (NMAP, 2008), 

and is one of four critical mathematics topics at Grade 7 in the Common Core State Standards 

(CCSS; National Governors Association Center for Best Practices & Council of Chief State 

School Officers, 2010). In this introduction, we describe the importance of proportional 

reasoning and introduce the theoretical framework for SBI. Then, we summarize prior research 

evaluating the SBI intervention on problem solving, especially proportional reasoning, and close 

with a discussion of how the present study extends the literature. 

Proportional Reasoning  

Proportional reasoning, which is fundamental to the productive growth of mathematical 

reasoning, is considered key to progress in more advanced mathematics, including algebra 

(Boyer, Levine, & Huttenlocher, 2008; NMAP, 2008). Proportional reasoning refers to the 

understanding of  

structural relationships among four quantities (say a, b, c, d) in a context 

simultaneously involving covariance of quantities and invariance of ratios or 

products; this would consist of the ability to discern a multiplicative relationship 

between two quantities as well as the ability to extend the same relationship to 

other pairs of quantities (Lamon, 2007, p. 638).  

Many children and adolescents, as well as adults, are not proficient with fractions, ratios, 

and proportions, which are essential concepts of proportional reasoning (Adjiage & Pluvinage, 

2007; Fujimura, 2001; Lamon, 2007; Lobato, Ellis, Charles, & Zbiek, 2010; Miyakawa & 

Winslow, 2009; NMAP, 2008; Tourniaire & Pulos, 1985). Much of the literature in mathematics 

education indicates that young students’ difficulty with proportional reasoning is related to their 
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development of multiplicative versus additive reasoning (Lamon, 1993, 1995; Thompson & 

Thompson, 1994). Students often employ strategies (e.g., buildup or double counting process 

strategy; calculating the value of one unit and then multiplying by that value to get the desired 

amount; partitioning) without understanding the multiplicative nature of proportions or the 

composite nature of ratios. Alternatively, they tend to use many erroneous strategies in solving 

proportional reasoning tasks (e.g., focusing on nonmathematical reasons when comparing two 

ratios, “ignoring part of the data in the problem, looking at ratios of differences between the 

same variables” [the additive strategy]; Ozgun-Koca & Altay, 2009, p. 31).  

Proportional reasoning is a complex concept that not only requires understanding the 

concept of ratios and that two or more ratios are equal but also requires the ability to extract 

relevant information to develop a representation of the problem situation (Al-Wattban, 2001). 

Often, the topics of ratio and proportion are presented in the context of word problems. Solving 

even simple proportion problems is challenging for students when they lack understanding of the 

problem situation and whether a solution strategy is applicable (Weinberg, 2002). Not 

surprisingly, many students require instruction that supports the development of underlying 

concepts and flexible procedures to solve proportion problems (NMAP, 2008; Tourniaire & 

Pulos, 1985).  

 Over time and with focused instruction in various linear functions in mathematics and 

science, secondary school students may learn to reason proportionally. However, researchers 

have documented another problem that tends to show up – students apply the notion of linearity 

to most situations even when it is not applicable (Fernández, Llinares, Van Dooren, De Bock, & 

Verschaffel, 2012; Van Dooren, De Bock, Evers, & Verschaffel, 2009; Van Dooren, De Bock, 

Hessels, Janssens, & Verschaffel, 2005). It is this overreliance on linear methods, also referred to 
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as the illusion of linearity, that affects students’ reasoning and problem solving in that they 

typically do not distinguish proportional from non-proportional situations (e.g., Van Dooren et 

al., 2005).  The overuse of proportionality is often seen in classrooms that employ missing-value 

proportional reasoning tasks and where the focus is on technically correct procedures (Van 

Dooren, De Bock, Vleugels, & Verschaffel, 2010). As such, students tend to associate missing 

value problems with proportional reasoning and solve them using algorithmic procedures (i.e., 

cross multiplication)	 without understanding why they are applicable (Van Dooren et al., 2010). 

Although student difficulties with proportional thinking may be explained in part by ‘routine 

expertise’ versus ‘adaptive expertise’ (see Hatano, 2003), the overuse of linearity may indicate a 

lack of attention to the initial components of mathematical modeling – understanding the 

problem and the relationship between the relevant elements in the problem to translate into a 

mathematical model (see Verschaffel, Greer, & De Corte, 2000). 

Although research on ratios and proportional relationships was prominent in the 1980s 

and early 1990s (e.g., Behr, Wachsmuth, Post, & Lesh, 1984; Harel, Behr, Post, & Lesh, 1992; 

Carpenter, Fennema, & Romberg, 1993), and scholars in mathematics education continued to 

explore ways to improve students' learning of this important topic, previous intervention research 

has been limited in several ways. First, most interventions (e.g., inquiry methods that encourage 

students to construct knowledge of proportionality through collaborative problem solving 

activities, use of pictorial representations or manipulative models) were short-term and did not 

focus on the broad domain of ratios and proportional relationships (Adjiage & Pluvinage, 2007; 

Fujimura, 2001; Myakawa & Winslow, 2009). Second, many of the studies used quasi-

experimental research designs or a teaching experiment (including lesson study, action research) 

to evaluate the effectiveness of different approaches to the teaching and learning of proportional 
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reasoning, limiting causal inferences. Third, these studies typically involved a limited number of 

students or classrooms (Adjiage & Pluvinage, 2007; Fujimura, 2001; Myakawa & Winslow, 

2009). Fourth, most of this research was conducted outside of the United States with non-English 

speaking students (e.g., Adjiage & Pluvinage, 2007; Fujimura, 2001; Myakawa & Winslow, 

2009; Ozgun-Koca & Altay, 2009); thus, the results of these studies may not generalize to 

middle school students in the United States.  

With the exception of a few studies that have tested the effectiveness of a comprehensive 

curriculum package (e.g., Connected Mathematics Project; see Ben-Chaim, Fitzgerald, 

Benedetto, & Miller, 1998), previous research using randomized studies with teachers in various 

settings implementing the intervention with fidelity is sparse. The present study addressed these 

limitations by using a randomized design with a relatively large sample of teachers to investigate 

the effects of the SBI intervention, which incorporates key instructional practices identified in 

policy reports and research articles (see Theoretical Framework section).  Further, the content in 

the current SBI intervention covered the CCSS content standards of ratios and proportional 

relationships. Specifically, the focus was on proportional problem solving involving ratios/rates 

and percents with the intervention helping students make sense of their reasoning related to 

proportions. 

Theoretical Framework 

 SBI’s theoretical framework is an elaboration of schema theory and is guided by 

cognitive models of mathematical problem solving (Mayer, 1999). Our SBI intervention 

integrates four major components; it includes a focus on the mathematical structure of problems, 

use of visual representations, explicit problem solving and metacognitive strategy instruction, 

and an emphasis on procedural flexibility. These components correspond with the 
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recommendations articulated in the What Works Clearinghouse’s recent research synthesis on 

improving students’ mathematical problem solving performance (Woodward et al., 2012) and 

address the mathematical practices (e.g., look for and make use of structure, model with 

mathematics) in the CCSS. 

Focusing on the mathematical structure of proportion problems. Prior research has 

found that providing students with problem categories and ways to place problems within 

categories improves problem solving substantially (Chen, 1999; Quilici & Mayer, 1996, 2002). 

Historically, there is strong evidence of the benefits of arithmetic word problem solving 

instruction that teaches students to identify problems of a given type (i.e., change, combine, 

compare) by focusing on the problem structure (e.g., Fuchs et al., 2008; Fuchs et al., 2010; Fuson 

& Willis, 1989; Jitendra et al., 2007). In the current SBI intervention, we focused on a less well-

established typology of basic problem types on mathematical subtopics of ratio, proportion, 

percent/percent of change within the broad domain of proportion.  Recent research suggests that 

focused instruction on identifying the problem structure of proportion problems is beneficial (see 

Jitendra et al., 2009; Jitendra, Star, Dupuis, & Rodriguez, 2013; Jitendra, Star, Rodriguez, 

Lindell, & Someki, 2011).  

 Using visual representations as mathematical tools. There is a growing body of 

evidence that teaching students to model problems using representations (e.g., diagrams) to make 

visible the underlying problem structure has a positive effect on students’ problem solving 

performance (e.g., Fuchs et al., 2008; Fuson & Willis, 1989; Jitendra et al., 2007, 2009, 2011, 

2013; Xin et al., 2011). It is important to teach students a few types of visual representations 

(e.g., tables, graphs, diagrams) that effectively link the relationships between the relevant 

quantities in the problem with the requisite mathematical operations needed to solve the problem 
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and provide instruction on how to represent the problem using a visual representation 

(Woodward et al., 2012). Our SBI intervention uses schematic diagrams that help students to 

represent the mathematical information in problems.   

 Addressing problem solving and metacognitive strategy instruction. Research 

suggests that effective instructional practices (e.g., “explicit teacher modeling and instruction, 

guided questions, and efforts to engage students in conversations about their thinking and 

problem solving,” Woodward et al., 2012, p. 7) to represent, analyze, and solve problems serve 

to enrich the learning of mathematical concepts and notations and can have a direct effect on 

students’ achievement. Furthermore, there is compelling evidence that metacognitive strategy 

instruction, such as monitoring and reflecting during problem solving enhances students’ 

mathematical reasoning (Kramarski & Mevarech, 2003; Mevarech & Kramarski, 2003). Such 

instruction helps “students think about what they are doing and why they are doing it, evaluate 

the steps they are taking to solve the problem, and connect new concepts to what they already 

know” (Woodward et al., 2012, p. 17). We included metacognitive instruction as a component of 

problem solving instruction in the SBI intervention to teach students not only how to solve a 

problem, but also how to monitor and reflect on their problem-solving processes. 

 Emphasizing procedural flexibility. Research supports the positive effects of teaching 

and encouraging problem solvers to use a variety of strategies for solving problems (see 

Woodward et al., 2012). Understanding when, how, and why to use a broad range of methods for 

a given class of problems improves procedural knowledge (Star, 2005, 2007). Furthermore, there 

is compelling evidence that instruction that supports using, sharing, comparing, and contrasting 

multiple solution methods can improve students’ procedural flexibility (e.g., Star & Rittle-
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Johnson, 2008, 2009). In the current intervention, the emphasis was on solving problems in 

different ways using appropriate methods. 

Evaluation of SBI Intervention on Proportional Problem Solving 

Only a few studies have conducted causal studies of the effects of the SBI intervention on 

solving proportion problems involving ratios/rates and percents (Jitendra et al., 2009, 2011, 

2013; Xin, Jitendra, Deatline-Buchman, 2005). Xin et al. developed and tested the effectiveness 

of the SBI intervention with middle school students struggling in mathematics. The intervention 

focused on teaching a limited set of topics – proportion and multiplicative compare word 

problems – in 12 one-hour small group tutoring sessions. Using random assignment, scores on 

researcher-developed measures showed that students in the SBI group on average outperformed 

students in the control condition by d = 1.69 SD. The positive effects on proportional problem 

solving attributed to SBI strengthened on a retention test (d = 2.53). 

 Using a more comprehensive coverage of topics that included ratios, equivalent ratios, 

ratio word problems, rates, proportion word problems, scale drawing problems, Jitendra et al. 

(2009) studied the effectiveness of the SBI intervention with seventh-grade students. Eight 

seventh-grade classrooms were randomly assigned to SBI or a “business as usual” control 

condition. Students in both conditions were instructed five times a week for 45 min over a 2-

week period. Compared to the control condition, students in the SBI group scored on average 

significantly higher on proportional problem solving (d = 0.45) and maintained the effects on a 

4-month retention test (d = 0.56).  

 To address limitations of the Jitendra et al. (2009) study, a follow-up study was designed 

that targeted additional topics such as proportional problem solving involving percents, included 

more classrooms (j = 21) across three schools in two suburban school districts, extended 
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instructional time over a 6-week period, and provided longer professional development to 

classroom teachers (Jitendra et al., 2011). Seventh-grade classrooms were randomly assigned to 

SBI or control conditions, and results indicated that the posttest difference favoring the SBI 

group was statistically significant for proportional problem solving (multilevel standardized 

effect size = 0.32). However, the effects of SBI were not maintained on the retention test given a 

month after the end of the intervention. The authors attributed this finding to a lack of power to 

detect significant differences given the modest number of classrooms  (j = 21). 

 Using a randomized design, Jitendra et al. (2013) conducted a rigorous replication of 

Jitendra et al. (2011) that increased the sample size to include more classrooms (j = 42) across 

more schools (k = 6) and reduced direct involvement of the research team. Fidelity of 

implementation was assessed with videotaped sessions of both SBI and control classrooms. With 

these methodological improvements, students in SBI classrooms on average outperformed 

students in control classrooms on a measure of proportion problem solving at posttest (multilevel 

standardized effect size = 0.36) and maintained their problem solving skills at 6 weeks follow-up 

(multilevel standardized effect size = 0.29).  

The Present Study 

 While previous studies have supported the efficacy of SBI, each of the evaluations 

involved small to modest numbers of teachers (range = 6 to 42) and their students for a 

geographically limited sample of schools (range = 1 to 6) that used a total of four different 

mathematics programs. The research design in these studies consisted of randomly assigning 

classrooms to SBI intervention or control (business as usual) conditions. Teachers with multiple 

classrooms taught both SBI and control classrooms all of which were included in the study. In 

the current study, we were interested in determining whether a similar implementation of SBI, as 
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in Jitendra et al. (2013), would have comparable effects for a sample of greater geographic and 

socioeconomic diversity of schools and students, and a larger number of teachers. Another 

important feature of the study was eliminating the direct involvement of the research team in 

supporting both SBI classroom implementation and test administration. Research team members 

supported teachers primarily on logistical issues rather than the level of curriculum 

implementation intensity provided in previous studies.  

Additionally, we improved our study design by randomly assigning teachers to SBI or 

control and then randomly selecting one of their classrooms to participate in the study, meaning 

that each teacher in the current study taught in a SBI or control classroom but not both. By 

implementing SBI in 50 school districts across a state in the upper Midwest reflecting urban, 

suburban, and rural school settings we also assessed whether the efficacy of SBI would hold 

when control classrooms used increasingly diverse mathematics programs. Another purpose of 

this study was to document the effects of SBI on proportional problem solving related to student 

background variables like socioeconomic status or sex.  

 We had three specific research questions. Our first research question examined whether 

SBI leads to improved proportional problem solving performance compared to a business-as-

usual instruction control group and whether students’ proportional problem solving skills would 

be maintained 9 weeks after the termination of the intervention. Based on previous research, we 

hypothesized that SBI would on average increase student understanding of proportional 

reasoning compared to a control group (e.g., Jitendra et al., 2009, 2011, 2013).  

 The second research question examined whether SBI results in increased achievement 

compared to a control group on overall mathematical problem solving performance after a 

focused period of time spent on ratios and proportional relationships. We used a norm-referenced 
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standardized test that measures application of mathematics concepts in multiple content areas 

(e.g., number, data analysis, geometry) to examine overall problem solving achievement and 

what students might be expected to know during the entire year. Given that 67% of the items on 

this test are based on concepts not taught in the study, we hypothesized that students’ overall 

problem-solving achievement in the two groups would be comparable.  

 The third research question we tested was whether SBI and teacher-classroom 

characteristics moderate the effects of student-level background variables (e.g., socioeconomic 

status, sex) on mathematical problem solving. We hypothesized that treatment classrooms would 

be associated with weaker relationships between background variables and understanding 

proportional reasoning, compared to control classrooms, which would provide evidence of the 

moderating effect of SBI. 

 Method 

Setting and Sample 

 Middle school math teachers in an upper Midwest state who taught a typical seventh-

grade math class (approximately 600) were invited to participate in the study. Of those, a total of 

82 seventh-grade math teachers from 58 middle schools across 50 districts volunteered to 

participate in the study. Student enrollment in the 50 districts ranged from 115 to 37,864 

students, with an average enrollment of 1,698 students. Of the 50 districts, 38 (76%) were 

located in rural settings, eight (16%) in suburban settings, and four (8%) in urban settings. The 

percent of minority students in the districts ranged from 0 to 76% with an average of 34%; the 

percent of students eligible for free or reduced price lunch in districts ranged from 15 to 73% 

with an average of 52%. Student and teacher participant information is provided in the following 

sections.  
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 Students. The sample consisted of 1,999 seventh-grade students; the majority of students 

were White (77%), with 9% Black, 7% Hispanic, 6% Asian, and 1% American Indian. Due to 

data analysis difficulties linked to small sample sizes and the presence of missing data, the n = 18 

American Indian students were removed; as such, the student sample used for the present 

analyses consisted of 1,981 students (fewer in some analyses because of missing data). The mean 

age of these students was 12 years, 8 months (SD = 4 months). Approximately 40% of the total 

sample of students was eligible for a free or reduced price lunch, 10% received special education 

services, and 6% were English language learners (see Table 1 for student demographic 

information).  

 Teachers. The 82 participating seventh-grade mathematics teachers’ mean years of 

experience teaching mathematics was 11.9 (SD = 6.4, range 1 to 34 years). All teachers were 

certified to teach mathematics; 6% were also certified to teach science, 15% were certified in 

subjects other than mathematics or science, and 36% were certified in all subjects (generalist). 

Similarly, all teachers were certified to teach grades 6-8; in addition, 55% were also certified to 

teach grades 9-12 and 45% to teach grades K-5. Virtually all of the teachers were White (j = 79), 

with one Hispanic, Asian, and American Indian teacher. Sixty-seven percent of teachers were 

female (see Table 1 for teacher demographic information). Forty six (56.1%) teachers taught in 

schools classified as located in a rural setting, 27 (32.9%) in a suburban setting, and 9 (11%) in 

an urban setting. 

Study Design  

 We used a prospective randomized cluster design with longitudinal (pretest, posttest, 

delayed posttest) data in which teachers/classrooms served as clusters. If properly implemented, 

this design ensures that estimated treatment effects are unbiased (Bloom, Richburg-Hayes, & 
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Black, 2007).  Initially, one class of students for each of the 82 teachers was randomly selected 

to participate in the study. Then, each of the 82 teachers and their participating class (cluster) 

was randomly assigned to one of two conditions: treatment (j = 40) or control (j = 42). The 

unequal number of teachers/classrooms was due to one teacher originally assigned to the 

treatment condition being subsequently moved to the control condition for logistical reasons. 

Immediately following random assignment one teacher indicated that she could not attend PD, 

which precluded her from being a treatment teacher. The teacher was moved to the control 

condition before the PD training. As such, the change in assignment could not have affected 

the teacher's fidelity implementation, which was more similar to the control condition. 

 An a priori power and sample size analysis using the Optimal Design software (Spybrook 

et al., 2011) was performed that focused on testing the SBI vs. control effect for cross-sectional 

data needed to answer the research questions. The results indicated that 82 clusters and 1,900 

students would allow us to detect a standardized effect of .30 (a moderately small effect 

following Cohen, 1988) for the SBI vs. control comparison, with a power of .80 for an intra-

class-correlation of .19 taken from Hedges and Hedberg (2007) for seventh grade mathematics 

data, and a power of .95 under the same conditions for a standardized effect of .40. 

Treatment Instruction 

Treatment teachers participated in 16 hours of professional development (see 

Professional Development section) in mid-December, followed by delivering the SBI 

intervention five days a week across six weeks between January and February. Teachers replaced 

the lessons on ratio/proportion and percent in their curriculum with the SBI lessons.  

SBI intervention. The SBI program content consisted of two replacement units, one 

focusing on Ratio/Proportion and the other on Percent. Each unit comprised ten 50-min lessons 
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with an additional lesson at the end of the second unit that provided practice on solving problems 

related to ratio, proportion, and percent. The SBI program was aligned with the state 

mathematics standards and covered the same content taught in seventh-grade classrooms (for 

further details about the content of SBI see Jitendra et al., 2011). SBI teachers were provided 

with (a) a detailed teacher guide that we developed as a resource to fully understand program 

features, along with teaching materials (e.g., visual diagrams and problem solving checklists) and 

student materials (i.e., workbook and homework book) to support implementation of activities to 

develop critical concepts and skills, and (b) professional development to help teachers use the 

lessons. The SBI intervention and professional development are described in greater detail next. 

SBI’s instructional approach was designed to include four instructional practices: (1) 

explicitly modeling problem solving and metacognitive strategies, (2) activating the 

mathematical structure of problems, (3) visually mapping information in the problem using 

schematic diagrams (see Figure 1), and (4) developing procedural flexibility. With these four 

practices, teachers initially modeled problem solving by thinking aloud (see Appendix A, sample 

excerpt of the script for solving a problem in Lesson 11 located in the online supplemental 

materials) and gradually shifted responsibility to the students by scaffolding instruction using 

teacher-student dialogues to help clarify and refine their thinking (see Appendix A, sample 

excerpt of the script for percent of change problem solving in Lesson 14 located in the online 

supplemental materials).  

The aim of the first practice was to promote mathematical problem solving and 

metacognition on the basis of extensive modeling and scaffolding by the teachers. Using a four-

step problem solving strategy, represented by the acronym DISC (Discover the problem type, 

Identify information in the problem to represent in a diagram, Solve the problem, Check the 
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solution), teachers first focused on activating the mathematical structure of the problem (second 

practice). Through classroom discussions and by answering deep-level questions, teachers 

encouraged students to identify the type of problem (i.e., ratio, proportion, or percent) by 

reading, retelling, and examining information in the problem as well as thinking about how 

problems within and across types are similar or different. For example, students learned that ratio 

and proportion problems are similar because they both involve a multiplicative comparison of 

two quantities and are different in that ratio problems are confined to a single situation, whereas 

proportion problems describe a statement of equality between two ratios/rates that allows one to 

think about the ways that the two situations are the same.  

Second, students learned to connect the problem to a certain schematic diagram and used 

the appropriate diagram to represent the problem such that the visual mapping showed the 

relevant elements, relations and conditions embedded in the problem (third practice). 

Specifically, instruction focused on identifying information critical to solving the problem to 

represent using the schematic diagram. Through careful instruction, students also reasoned why 

the same ratio schematic diagram can be used to represent information in both ratio and percent 

problems (a percent is a special type of ratio). With further instruction, students understand that 

while ratio diagrams work well for some percent of change problems to represent the relation 

between the change amount and original amount, more complex percent of change problems 

(including simple interest) require the use of diagrams that depict both multiplicative and 

additive relationships (see Percent of Change diagram in Figure 1).   

Third, students estimated an answer, made decisions about what method (equivalent 

fractions, unit rate, cross multiplication) to use to solve the problem (fourth practice), and solved 

the problem. With explicit instruction on multiple solution methods for solving proportion 
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problems, the goal of such instruction was to have students become cognizant of specific 

methods that are more efficient than others and select the strategy that is most efficient based on 

the numbers in the problem.  

Finally, teachers encouraged students to use their estimated answer from the previous 

step in evaluating their work to determine whether the answer made sense. At each stage in the 

problem-solving process, teachers used prompts or deep-level questions to encourage students to 

monitor and reflect while solving a problem. For example, prompts were used to ensure that 

students (a) understand and identify the problem type (e.g., Why is this a proportion problem? 

How is this problem similar to or different from one I already solved?), (b) identify and represent 

the critical information in the problem using an appropriate diagram (e.g., Which diagram is best 

to represent information in the problem?), (c) select a strategy to solve the problem (e.g., Which 

solution method would best help me solve this problem?), and (d) check the solution (e.g., Is the 

answer reasonable based on my estimate?).  

Professional development. The goal of the two-day professional development provided 

by one of the authors of the SBI program was to support teachers’ learning and implementation 

of SBI, as well as to provide training in implementing the new approach and assessments 

faithfully. In the first training session, teachers were introduced to the project and key features of 

the SBI intervention (e.g., recognizing problem types, generating estimates, knowing multiple 

strategies) to support student learning of ratio, proportion and percent. Teachers practiced with 

SBI techniques and materials to sort problems by type of problem, use schematic diagrams to 

represent information in the problem, generate “ballpark” estimates (i.e., quick and easy based 

on benchmark numbers and fractions), and select an appropriate solution method from among 

several strategies to solve problems.  
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The second training session gave teachers an opportunity to review the two curricular 

units on ratios/rates and percent along with associated materials and to learn about implementing 

the intervention. Throughout the training, the focus was on developing students’ proportional 

reasoning with the SBI intervention. Teachers viewed multiple short video segments of teachers 

from a previous study to illustrate the implementation of the intervention, with the focus on 

eliciting student discussion. The video segments provided an opportunity to address the 

importance of implementing SBI intervention faithfully without the need to read the teacher 

guide while teaching. In addition, the training emphasized the importance of treatment teachers 

not sharing project materials or strategies with any control group teachers in their building. 

 “Business as usual” control instruction. Students in the control condition were taught 

the topics of ratio, proportion, and percent using their district-adopted textbooks in the same time 

period as the treatment condition. We gathered information on textbooks used in the control 

classrooms from a written teacher questionnaire in which teachers listed the mathematics 

textbooks they used and a review of lessons on ratio/proportion and percent topics sampled from 

the textbooks. Overall, teachers in the control classrooms used traditional resources that 

consisted of 10 different textbooks published from 2001 to 2012 by one of three publishers: 

Houghton, Mifflin, Harcourt; Glencoe/McGraw Hill; Pearson Education. These textbooks were 

examined for the presence of the core instructional components of SBI (i.e., identifying the 

problem type, visual representations, modeling of problem solving and metacognitive strategies, 

multiple solution strategies).  

Several control textbooks included instructional components such as the use of visuals, 

problem solving procedures, and multiple solution strategies. For example, all of the control 

textbooks included various visual representations (e.g., pie graphs, percent bar graphs, strip 
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diagrams). However, none provided instructions to activate the mathematical problem structure 

using the visuals. Although about one-half of the control curricula also incorporated problem-

solving instruction (e.g., “use a table to set up a proportion, write a proportion, multiply each 

side by 100, simplify;” Larson, Boswell, Kanold, & Stiff, 2007, p. 348), the emphasis was more 

on problem solution procedures and less on problem comprehension. Metacognition, when 

included in the textbooks, was not explicitly targeted for instruction (e.g., reflect using a math 

journal). Approximately one-third of the control textbooks encouraged the use of various 

solution strategies (e.g., recognizing that there is more than one way to solve a proportion 

problem); however, none emphasized the selection of the most efficient strategy based on the 

relationships between the numbers in the problem. In short, our review of control classroom texts 

suggested that the instructional components covered do not overlap with those in treatment 

classrooms in ways that would distort estimates of the effects of SBI.  To assess the impact of 

different curricula used in control classrooms we performed analyses comparing the proportional 

problem-solving (PPS) and Group Mathematics Assessment and Diagnostic Evaluation 

(GMADE) test scores of control students as a function of the curriculum they experienced. 

Measures   

 Proportional problem-solving (PPS) test. We assessed students’ proportional problem 

solving performance using the PPS test, which we developed using released items related to the 

topics of ratio, proportion, and percent from NAEP and TIMSS as well as questions from past 

state mathematics assessments (see sample items in Appendix B located in the online 

supplemental materials). The same test was used for pretest, posttest, and delayed posttest. The 

delayed posttest was given 9 weeks after the end of the intervention. The PPS test included 
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multiple-choice items and short-response items that addressed the general program content of 

ratio/proportion and percent.    

The 23 multiple-choice items were dichotomously scored. We scored the four short-

response items on the PPS test using a rubric, which emphasized correct reasoning; responses 

were scored on a 0-to-2 point scale. Students’ scores on the PPS test were calculated by taking 

the sum of their points earned (total possible points equaled 31), which means that the short-

response and multiple-choice items were unequally weighted.  

To score the short-response items, we developed a rubric based on a sample of student 

responses from a previous study using the same measure (Jitendra et al., 2013). Next, all raters 

participated in training that involved scoring several sample student responses until at least 90% 

agreement between raters was reached. The pretest, posttest, and delayed posttest short-response 

items were scored by one of several project staff members who were blind to the student group. 

To assess the degree of inter-rater consistency a different rater scored 33% of the short-response 

items, producing intra-class correlations 0.85, 0.91, and 0.89 at pretest, posttest, and delayed 

posttest, respectively.  

To assess the reliability of the PPS test we followed recommended practice (Dunn, 

Baguley, & Brunsden, 2013) and performed separate analyses for the pretest, posttest, and 

delayed posttests using the jMetrik software (Meyer, 2007).  jMetrik is a comprehensive item 

analysis software package that assist users in identifying the measurement model that best 

captures patterns in the item responses, and provides a range of useful statistics such as reliability 

coefficients. The jMetrik software identified the congeneric measurement model as providing the 

best fit to the PPS item responses (RMSEA values £ .03; GFI values ³ .97), and we report the 

(omega) reliability coefficient associated with this model. 
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A congeneric measurement model assumes a single continuous latent factor underlies (in 

our case) the dichotomous- and trichotomously-scored PPS items but places fewer assumptions 

on the data than other models, such as that assumed to underlie the traditional alpha coefficient 

of reliability (McDonald, 1999). Specifically, in a factor-analytic framework the congeneric 

model allows item loadings to vary and tends to produce unbiased (or less biased) estimates of 

reliability compared to the traditional alpha reliability coefficient, especially if item response 

formats vary (McDonald, 1999) as is the case with the PPS. The omega reliability coefficient 

associated with the congeneric model represents a ratio of the estimated true score variance to 

observed score variance obtained from a factor analysis and thus has values between 0 and 1, 

with higher values indicating greater reliability (Dunn et al., 2014; Revelle & Zinberg, 2009).  

For the PPS pretest, posttest, and delayed posttest the estimated omega reliabilities were 0.69, 

0.77, and 0.76, respectively. Because omega can be interpreted like the traditional alpha 

coefficient of reliability in that values closer to one signal less measurement error, the PPS 

reliabilities indicate moderate reliability (Nunnally, 1978, p. 245). We recognize that reliabilities 

in this range may be deemed inadequate by some researchers. However, it is important to 

emphasize that we found statistically significant treatment effects for the PPS posttests (see 

below) despite the random measurement error linked to these reliabilities. Thus, while 

the reliabilities for the PPS were somewhat smaller than desired they did not compromise our 

ability to detect treatment effects. 

 Group Mathematics Assessment and Diagnostic Evaluation (GMADE). We used the 

Process and Applications subtest of the GMADE (Pearson, 2004), Level M, Form A, a norm-

referenced standardized assessment, at both the pretest and posttest to assess students’ overall 

mathematics problem solving performance. The construction and validation of this test was 
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informed by the Principles and Standards for School Mathematics of the National Council of 

Teachers of Mathematics (NCTM, 2000). The Process and Applications subtest specifically 

measures students’ ability to comprehend mathematical language and concepts and apply 

relevant operations to solve word problems across multiple content areas (e.g., algebra, 

geometry, number and operations). This allowed us to examine student performance on a general 

measure of problem solving rather than only on ratio/rates and percent problem solving. The 

Process and Applications subtest includes 30 multiple-choice items that require students to read a 

short passage of one or more sentences and choose the best of four possible answers, in which 

choices included numbers, pictures, or symbols (Williams, 2004). Some items also included 

multiple-step problems and Process Problems that require identifying a process (e.g., reasoning) 

or application to derive the answer. A Process Problem is one that does not require students to 

solve the problem, but has them think about the process for solving it. For example, students 

would be presented with a problem and asked a process question such as, “What is the 

appropriate first step to solve the following problem?” (Pearson, 2004, p. 22). 

All items were scored as correct or incorrect. Once again the congeneric model best fit 

the item data, with coefficient omega reliabilities for the pretest and posttest of 0.61 and 0.69. 

The PPS and GMADE assessments were group-administered in classrooms by the 

classroom teacher following standardized protocols. Both tests were untimed, but each test could 

be completed in 50 minutes on average. All students were administered the pretests in December 

of the school year and posttests during the week following the last day of the intervention, with 

the PPS test also administered nine weeks later. 

Fidelity of implementation. To document and measure fidelity of implementation, we 

developed two measures based on guidelines proposed by O’Donnell (2008) that addressed 
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procedural fidelity and adherence to the SBI intervention (Dane & Schneider, 1998) as well as 

overall quality of instruction in treatment and control classrooms based on attributes of effective 

teaching. Fidelity of implementation and quality of instruction information was generated by 

videotaping an entire lesson on proportion problem solving for each teacher during the 6 weeks 

of the study. We selected proportion problem solving lessons to ensure that the observed tasks 

incorporated the core features that were targeted for evaluation. We assessed procedural fidelity 

and adherence by observing videotaped lessons using a checklist developed to document the 

presence of the core features of the SBI intervention. The same checklist was also used in the 

control condition to evaluate program differentiation and determine whether control teachers 

spontaneously provided instruction that was similar to the key elements of SBI (Dane & 

Schneider, 1998).	 For each lesson, raters completed seven items evaluating whether teachers 

completed all components corresponding to the four SBI instructional practices and whether they 

were fluent in facilitating student thinking. The seven items were: (a) identifies the problem type 

by focusing on the key problem features, (b) connects the new problem to previously solved 

problems, (c) represents critical information in the problem text using an appropriate diagram, 

(d) generates an estimate prior to solving the problem, (e) discusses multiple solution strategies, 

(f) solves the problem and presents the solution within the context of the problem, and (g) 

evaluates the solution. 

Procedural fidelity items were coded on a 0-to-3 scale (3 = high level of implementation 

– 0 = did not implement). The coding scheme for the fidelity measure was developed by one of 

the authors in consultation with the first author (the SBI program developer), with the measure 

finalized after multiple rounds of independent video coding by six coders, discussion, and re-

operationalization of the codes. During coder training a benchmark of 90% agreement on 
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applying codes was treated as adequate. Fidelity was independently assessed for each classroom 

video by two coders, producing a total of 160 codings (i.e., two per classroom). We were not 

able to record two control classroom teachers because of scheduling conflicts. Disagreements in 

coding were resolved through discussion and review of the videotapes. Inter-rater reliability was 

estimated by computing intra-class correlations for the coder ratings and averaged 0.98 across 

the seven items (range 0.97 to 0.99). 

The overall quality of instruction was assessed using four items that focused on features 

such as the teacher’s ability to clarify the lesson purpose, provide lesson closure, manage 

instructional time (i.e., how well the teacher managed student behavior), and minimize 

mathematical errors. The items were evaluated on the same 0-to-3 scale as the fidelity measure, 

and inter-rater reliability for the coder ratings averaged 0.99 across the four items (range 0.96 to 

1.00). 

Data Analysis 

 Descriptive statistics for the measures by treatment are presented in Table 3. We also 

compared the scores of control students on the PPS and GMADE assessments as a function of 

the mathematics curriculum they experienced; nonsignificant results imply that the control 

curricula did not differentially affect student PPS and GMADE scores and strengthen arguments 

for pooling control classrooms. 

To assess differences between the treatment and control classrooms we fitted a series of 

multilevel (i.e., two-level, students within clusters) models with covariates at both levels using 

the HLM 6 software (Raudenbush, Bryk, & Congdon, 2004). Adjusting the data for control 

variables can account for variation that otherwise remains unexplained and improve estimation 

and statistical power (Bloom et al., 2007). The outcome variables included in the analyses were 
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the PPS posttest, PPS delayed posttest, and GMADE posttest, which were analyzed separately. 

We also performed an ancillary analysis of the PPS longitudinal data to explore student change 

over time and whether such change was impacted by the treatment. 

 For each outcome, the Level 1 (student) model contained three covariates: pretest score, 

sex (1 = males, 0 = females), and race (Black = 1, Hispanic = 1, and Asian = 1, White = 0 so the 

latter served as the reference group). All Level 1 covariates were grand-mean centered.  

Level 2 variables included the treatment variable (1 = SBI, 0 = control), five teacher 

covariates (i.e., number of post-secondary mathematics courses taken, number of post-secondary 

education courses taken, years of teaching experience in mathematics, number of PD hours in 

mathematics or mathematics education in the last year, sex), and variables capturing the 

percentage of limited English proficiency (LEP), eligible for free or reduced price lunch (FRL), 

and students receiving special education services per classroom or teacher. Given that there was 

little or no variation in classrooms with regard to the sample characteristics such as LEP, FRL, 

and special education (e.g., one-half of the classrooms had no LEP students) and thus 

compromised estimation of model parameters within each classroom, we decided to aggregate 

these variables to the classroom level (e.g., %LEP students in a classroom). Because the 

distributions of the percentages were ragged and discontinuous we rescaled these variables to 

quintiles and used the rescaled versions as Level 2 covariates.  

Slopes capturing the impact of student variables (e.g., sex) on the outcome variables were 

found to be statistically equal across classrooms (i.e., variance = 0).  Thus models examining the 

impact of treatment on Level 1 relationships were not fitted, and in what follows the results are 

based on intercepts-only models. 
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 We examined the data for evidence that model assumptions were satisfied for all 

analyses, and no major violations were found for any of the models. To control for compounding 

of Type I error rates several methods are available.  We used the Dunn-Bonferroni correction 

(Miller, 1966) in which an overall (i.e., experimentwise) Type I error rate (e.g., α = .15) is 

divided among all statistical tests linked to each outcome variable with no requirement that the 

error rate be divided equally. Accordingly, we assigned .05 to the test of the treatment effect 

because this was the most important effect in the model and divided the remaining .10 among 

tests of the remaining fixed effects, producing .10' .0071
14

a = = . Also, for both descriptive and 

inferential analyses we used all available data, which means that sample sizes vary across 

analyses depending on attrition patterns (missing data). 

Attrition analysis. An examination of missing data indicated that it centered on student 

variables and that for all outcomes, except the PPS delayed posttest, attrition was less than 5%.  

Importantly, attrition was approximately equal in the treatment and control groups. For the PPS 

delayed posttest, 6.8% of students had missing data because the test was not administered in two 

control classrooms due to end of the school year time constraints. The percentages of missing 

data for all student-level covariates were below 5%. 

Small percentages of missing data are unlikely to bias findings if the percentages are 

similar across groups (Peng, Harwell, Liou, & Ehman, 2006), but as a sensitivity analysis we 

also fitted each of the final HLM models to the student sample that provided complete data (no 

missing data) and compared the results to those obtained using all available data (some missing 

data). The results of these models did not differ in any significant way, suggesting that our 

models were insensitive to the presence of missing data. As such, we used all available data for 

each analysis meaning that student sample sizes for each analysis varied.  
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Results 

Descriptive Results  

 We initially performed a series of descriptive analyses that included examining the 

correlations between all measures and exploring pre-existing differences between the SBI and 

control group students. Results of the correlational analyses showed that the correlations between 

the PPS pretest and posttest, pretest and delayed posttest, and posttest and delayed posttest were 

0.65, 0.64, and 0.75, respectively. For example, the PPS pretest/posttest correlation of 0.65 

means that students who scored above (or below) the pretest mean also tended to score above 

(below) the posttest mean; equivalently, 2(.65) = .422 means that 42.2% of the variation in the 

posttest can be predicted from variation in the pretest. The correlation between the GMADE 

pretest and posttest was 0.54. Correlations between the PPS and the GMADE tests ranged from 

0.51 to 0.61 across time points.  

We also computed descriptive statistics to check whether the SBI intervention was on 

average implemented with fidelity. Table 2 displays both fidelity and quality of instruction data. 

We conducted t-tests to test group differences on both the fidelity and quality of instruction data 

and used the Dunn-Bonferroni correction to control for compounding of Type 1 error. With 

regard to the fidelity of implementation, the mean total score across the seven items on the 

fidelity checklist was 14.33 (SD = 3.86) for treatment teachers and 7.43 (SD = 3.00) for control 

teachers out of a possible 21 points (higher scores are consistent with greater fidelity). Results 

indicated statistically significant and fairly substantial differences between the treatment and 

control groups on the total score and all individual items except for item 6 (i.e., solves the 

problem and presents the solution within the context of the problem), with treatment teachers 

implementing SBI elements more than control teachers.  For example, the effect size of 1.34 for 
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“Identifies Problem Type” means that on average SBI classrooms were rated 1.34 SD above 

control classrooms, or, equivalently, 91% of SBI classrooms were rated higher than the average 

control classroom rating on this item (Lipsey et al, 2012). 

 With regard to quality of instruction, we expected to observe general teacher behaviors 

(e.g., clarifies lesson purpose, minimizes mathematical errors) in both treatment and control 

classrooms. The results indicate that, on average, both treatment (M = 9.50) and control (M = 

9.28) teachers were rated similarly on these behaviors, t(78) = 0.66, p = .507, indicating that on 

average there were no differences between the groups in terms of quality of instruction. These 

data (fidelity and quality of instruction) allowed us to investigate program differentiation (Dane 

& Schneider, 1998) in that there were clear differences in SBI instructional elements across the 

two groups, whereas the general quality of instruction was similar in both conditions. 

 Table 3 reports means and SDs for the treatment and control groups for each measure. 

Differences between the treatment and control groups on the GMADE pretest were not 

statistically significant, whereas the difference on the PPS pretest was d = -0.10 SD, which would 

be statistically significant at a= .05 given the large sample of students. It is not clear what the 

source of this difference is but the inclusion of this variable as a covariate in the multilevel 

analyses means the outcomes will be adjusted for this difference.  

 Last, we fitted two-level (students-within-classrooms) multilevel models using only 

control classrooms with curriculum dummy-coded to the PPS total, ratio/proportion, and percent 

posttest and delayed posttest outcomes, along with the GMADE outcome.  None of these results 

was statistically significant implying that for the outcomes we studied the particular curriculum 

used in a control classroom produced a similar impact, providing empirical evidence for pooling 

control classrooms. 
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Treatment Effects on Proportional Problem Solving  

The first research question asked whether SBI leads to improved proportional problem 

solving performance compared to business-as-usual instruction, and whether students’ 

proportional problem solving skills would be maintained 9 weeks after the termination of the 

intervention  

PPS posttests. To estimate the intraclass correlation (ICC) we fitted unconditional two-

level (students within teachers/classrooms) models separately to the PPS posttest and delayed 

posttest. The ICC was .21 (p < .001) for the posttest and .18 (p < .001) for the delayed posttest, 

indicating that 21% and 18% of the variance in these tests was between classrooms. These values 

are consistent with those for mathematics data reported by Hedges and Hedberg (2007) as typical 

in education. Next we fitted a model with student background variables and the PPS pretest at 

Level 1, and teacher covariates plus the treatment at Level 2.  

The results for the PPS posttest indicated that treatment was a statistically significant 

predictor of PPS posttest scores, with SBI classrooms outperforming control classrooms on 

average, γ01 = 1.70, t(72) = 5.38, p < .001. The standardized effect size for the treatment effect 

was 0.46 SD, meaning that approximately 68% of treatment classrooms scored above the mean 

of control classrooms (Lipsey et al., 2012); alternatively, the proportion of classroom intercept 

variance explained by the addition of the treatment variable above and beyond that attributable to 

other predictors in the model was 35%.  

In addition, the Black and pretest variables were statistically significant predictors of PPS 

posttest. The results indicated that Black students scored on average lower than White students, 

γ30 = -1.06, t(1799) = -3.23, p = .002. For the PPS pretest the results indicated that this variable 

was a significant predictor of the posttest, γ80 = 0.68, t(1799) = 27.64, p < .001 (see  Table 4). 
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The results for the PPS delayed posttest indicated that the treatment variable was a 

statistically significant predictor of delayed posttest scores, with SBI classrooms outperforming 

control classrooms, γ01 = 1.22, t(70) = 4.17 (p < .001), with a standardized effect = 0.32 SD 

indicating that approximately 62% of treatment classrooms scored above the mean for control 

classrooms. Treatment also accounted for 32% of the between-classroom intercept variance 

above and beyond that attributable to other predictors in the model. The full set of HLM results 

for the PPS delayed posttest can be found in Table 5. 

 Ancillary analysis of PPS longitudinal data. We also explored the impact of SBI on 

students’ growth using the PPS data by fitting a three-level (repeated measures within students 

within classrooms) model. The average PPS score at pretest was 14.0 (p < .001) and the average 

linear slope over time was 0.78 (p < .001), the latter indicating that student scores on average 

increased over time. The results indicated that the treatment variable was a statistically 

significant predictor of student linear growth, with SBI students having steeper learning 

trajectories than control students, 101ĝ  = 0.63, t(72) = 4.86, p < .001, suggesting that SBI was 

associated with greater growth in learning over time than the control condition.  

Treatment Effect on Mathematical Problem Solving (GMADE) 

The second research question examined whether SBI results in improved overall 

mathematical problem solving performance compared to business-as-usual instruction. The ICC 

for the GMADE posttest was .20 (p < .001), indicating that 20% of the variance in the posttest 

was between classrooms. Results of the fitted model for the GMADE posttest indicated that 

treatment was not a significant predictor of the GMADE posttest, and that the Hispanic and 

pretest variables were the only statistically significant Level 1 predictors. In addition, the results 
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indicated that teachers’ years of experience was a significant predictor of the GMADE posttest, 

γ02 = 0.07, t(72) = 3.37, p = .002 (see  Table 6).  

Moderating Effects of SBI 

The third research question examined whether SBI and teacher-classroom characteristics 

moderated the effect of student-level background variables on mathematical problem solving. To 

address this research question, we fitted a model to each outcome where the Level 1 slopes 

associated with the student demographic variables (e.g., sex) were allowed to vary. The results of 

these analyses indicated no statistically significant between- classroom variance in Level 1 

slopes for any of the outcomes (all p > .01), indicating that SBI and teacher-classroom 

characteristics did not moderate the effect of student-level background variables on mathematical 

problem solving. 

Discussion 

The main purpose of this study was to measure the efficacy of the SBI intervention.  SBI 

represents a promising approach for improving students’ problem solving performance based on 

previous research (Jitendra et al., 2009, 2011, 2013), and was extended in the current study to a 

larger number of teachers and students in middle schools that included rural, suburban, and urban 

locations, and to a setting in which the level of support to teachers implementing the intervention 

was removed. The first research question examined the effect of SBI on the proportional problem 

solving performance of seventh-grade students, and whether the effect of SBI was maintained 9 

weeks after its termination. Compared to the control condition, the SBI intervention had a 

significant positive effect on the PPS posttest and PPS delayed posttest (i.e., the proportion of 

between-classroom intercept variance attributable to the PPS posttest and delayed posttest effects 

were 35% and 32%). 
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Results of our longitudinal analysis showed that students in the treatment group 

demonstrated significantly more growth on the PPS relative to students in the control classrooms. 

These positive findings are notable because the control condition covered approximately the 

same instructional topics as SBI and thus had the same advantage on the PPS assessment, which 

assessed proportional reasoning. 

The effects of the SBI intervention are not only statistically significant, but also are 

substantively important (see What Works Clearinghouse, 2014). These results confirm findings 

from previous evaluation studies of the SBI intervention (Jitendra et al., 2009, 2011, 2013) and 

are noteworthy when we consider that the present study design was more rigorous (i.e., random 

assignment of teachers to the treatment and control groups), involved a greater number of 

teachers and students in more diverse locations, and that research staff were not present in 

classrooms to provide instructional support to teachers, as in previous studies. Our results also 

provide support for the efficacy of the SBI intervention in not only improving student learning 

with regard to proportional problem solving, but also the retention of the effect nine weeks after 

the end of the intervention, similar to prior findings (Jitendra et al., 2009, 2011, 2013).  

The stronger results for the SBI condition may be explained by program differentiation 

results from the fidelity data, which highlighted important instructional differences between the 

treatment and control conditions. Although the content focus was the same in both conditions, 

there were some clear and meaningful differences in instructional emphasis across conditions. 

Treatment teachers implemented SBI lesson elements significantly more (i.e., moderate to high 

level of implementation) than control teachers (i.e., low level of implementation). The fidelity 

data indicated that the SBI lesson elements control teachers were most likely to implement 

represented instructional practices that most mathematics teachers typically engage in (i.e., 
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providing a solution within the problem context). In contrast, control teachers were less likely to 

implement SBI lesson elements that are relatively unique to SBI (e.g., identifying the problem 

type). 

In short, SBI, with its emphasis on the underlying problem structure that requires students 

to categorize problem types by discerning the relevant elements, relations, and conditions 

embedded in the problem, use of visual representations, and instructional strategies (problem 

solving, metacognition, multiple solution) that encouraged students to engage in problem 

solving, reason at high levels, and explain their thinking, resulted in superior problem solving 

performance for treatment students compared to the control group. Integrating these strategies 

with mathematics content is important in connecting mathematics practices to mathematical 

content articulated in the CCSS (2010).  

The second research question examined the effect of SBI on the overall mathematical 

problem-solving performance of seventh-grade students. Our results indicate that the scores of 

students in the treatment group on a standardized test (Process and Applications subtest of the 

GMADE) were not significantly different from those of students in the control group. One 

explanation for this finding is that only 33% of the items on the GMADE focused on proportion 

and percent problem solving. The result supports our hypothesis and is not surprising in that the 

SBI intervention addressed only one of several strands of mathematics that the GMADE 

evaluates. However, the finding is discouraging even though it is consistent with that reported in 

Jitendra et al. (2011, 2013), in which the SBI intervention did not result in a significant change in 

performance on a domain-general measure of problem solving. Although SBI is designed to 

develop student competence in problem solving and proportional reasoning, and we provided 

multiple examples that emphasized the critical features of problem types that Wagner’s (2006) 
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theory of transfer-in-pieces argues are essential for a transfer effect, the standardized test 

comprised content that was less familiar and therefore less sensitive to the effects of SBI.  

Taken together, these results suggest that there was value added to students’ proportional 

problem solving performance as a result of the SBI intervention. Students in the treatment group 

exhibited a deeper level of reasoning and thinking on the PPS test while doing as well as students 

in the control group on a mathematical problem solving assessment that covers all content areas. 

The third research question was whether SBI and teacher-classroom characteristics 

moderated the effects of student-level background variables on mathematical problem solving. 

Our analysis showed that student-level relationships did not vary across classrooms for the 

outcome variables, meaning that the moderating effect of treatment could not be studied. Perhaps 

the lack of variation was related to the percentage of classrooms (76%) located in rural settings 

and that 77% of our student sample consisted of White students. The predominance of White 

students in rural schools is widely documented (NCES, 2013b) and may produce a homogeneity 

that leads to a lack of variation in student-level relationships across classrooms. Including 

location of a school district as a predictor did not produce significant results or influence model 

results in any noticeable way. 

Limitations 

This study has some limitations to be considered.	 One limitation of the study is that 

control group teachers did not receive professional development. As such, it is possible that the 

treatment effects were due, in part, to the 16 hours of professional development training the 

treatment teachers received prior to the implementation of SBI. However, it is worth noting that 

the aim of the study was to contrast SBI instruction with typical mathematics instruction (i.e., 

“business as usual”).		
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Another potential limitation in this study is that	 fidelity was addressed by evaluating one 

videotaped lesson, which may not have been representative of teachers’ fidelity of 

implementation across the entire study. At the same time, one video-recorded observation may 

be sufficient, given the relatively brief period of the intervention (six weeks), to provide a 

representative sample of participant functioning (Breitenstein et al., 2010). Video-recorded data, 

which have several important advantages (e.g., ability to capture complex interactions, allow 

multiple viewings), helped us maintain the quality of the coding that was done. In addition, 

because of scheduling constraints teachers were not evaluated on the exact same lesson (although 

all lessons were about proportion problem-solving), which could affect the results; however, the 

fidelity measure was designed to be used with all SBI lessons and was implemented in both 

treatment and control classrooms. Finally, a novelty effect is plausible in that the treatment 

teachers may have been motivated by the new approach, which is an advantage that the business-

as-usual teachers did not have.  

Future Research  

The results provide “proof of concept” (NCTM, 2007, p. 2) support for the efficacy of 

SBI. Focusing on the mathematical problem structure via schematic diagrams within the context 

of explicit instruction in problem solving and metacognition strategies, and encouraging students 

to employ multiple solution methods was more than or as effective as control instruction on 

mathematical problem solving. These conclusions and limitations of the study suggest several 

possibilities for future research. First, we intend to investigate the sustainability of SBI when 

implemented by SBI-experienced teachers as compared to SBI-novice teachers, which could also 

address a novelty effect of implementing a new approach.	 Although our previous studies show 

the	 promise of the SBI intervention when teachers implement SBI immediately after receiving 
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training on its use, it is less clear whether teachers will persist in implementing SBI with fidelity 

in subsequent years. Second,	 we will replicate the current study in a different geographic location 

within the U.S. in a high needs urban district that includes substantial diversity in the student 

population. We expect the forthcoming replication to not only speak to the generalizability of 

SBI effects but also increase the between-classroom variance to better examine any moderating 

effects of SBI or teacher-classroom characteristics on the relationships between student-level 

background variables and mathematical problem solving.  

SBI is a multicomponent intervention, and evidence from the fidelity of implementation 

data confirmed that SBI teachers required students to identify the problem type as well as discuss 

the similarities and differences between previously solved and new problems, identify relevant 

information to represent in a diagram, solve problems by estimating the answer, use multiple 

solution strategies, and check whether the answer makes sense, significantly more than control 

teachers. However, the scope of the current study did not include an examination of which 

features were most influential in student success on proportional reasoning suggesting that future 

research is needed to determine why SBI is effective. For example, a study that compares SBI as 

detailed in this study with SBI without the metacognitive strategy training is needed to examine 

the effects of metacognitive strategy training.  

Another area of future research would be to examine the influence of longer duration of 

SBI to address the issue of transfer effects. Wagner (2006) argues that transfer is “the 

incremental growth, systematization, and organization of knowledge resources that only 

gradually extend the span of situations in which a concept is perceived as applicable” (p. 10). A 

study in which participants are randomly assigned to receive SBI for different durations (e.g., 6 

weeks vs. 8 weeks) is needed to examine whether there is a transfer effect favoring longer 
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duration of SBI.  In addition, the SBI intervention may need to be revised to not only provide 

more general mathematics applications that include priming students to focus on the similarities 

and differences between new domains (e.g., algebra) and previously learned topics (e.g., ratios 

and proportion) to make explicit connections to content outside of the instructional domain, but 

also cover other content areas across the school year. It is also important to examine the long-

term effects of SBI for students who have mastered the major SBI components in the context of 

proportional reasoning. That is, does mastery of specific SBI components prepare students to 

succeed in more advanced mathematics (e.g., algebra, geometry) and result in transfer of content 

learned (e.g., ratios and proportions) to other content areas (e.g., science)?  
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Table 1. 
 
Participant Demographic Information by Treatment 
 
 SBI  Control  Total 

n % M SD  n % M SD  n % M SD 
Student Information               
Age    12.80 0.37    12.77 0.35    12.78 0.36 
Sex Female 456 46.7    497 49.5    953 48.1   

Male 499 51.1    472 47.0    971 49.0   
 Missing 22 2.3    35 3.5    57 2.9   
Race Asian 61 6.2    64 6.4    125 6.3   

Black 85 8.7    81 8.1    166 8.4   
Hispanic 67 6.9    77 7.7    144 7.3   
White 739 75.6    747 74.4    1486 75.0   

 Missing 25 2.6    35 3.5    60 3.0   
FRL  Yes 397 40.6    388 38.6    785 39.6   
 No 555 56.8    581 57.9    1136 57.3   
 Missing 25 2.6    35 3.5    60 3.0   
LEP  Yes 63 6.4    53 5.3    116 5.9   
 No 889 91.0    916 91.2    1805 91.1   
 Missing 25 2.6    35 3.5    60 3.0   
SpEd  Yes 107 11.0    82 8.2    189 9.5   
 No 845 86.5    887 88.3    1732 87.4   
 Missing 25 2.6    35 3.5t     60 3.0   
Location Rural 551 56.4    520 51.8    1071 54.1   

Suburban 339 34.7    335 33.4    674 34.0   
Urban 87 8.9    149 14.8    236 11.9   
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 SBI  Control  Total 
n % M SD  n % M SD  n % M SD 

Teacher Information               
Sex Female 26 65.0    29 69.0    55 67.1   

Male 14 35.0    13 31.0    27 32.9   
Location Rural 23 57.5    23 54.8    46 56.1   

Suburban 14 35.0    13 31.0    27 32.9   
Urban 3 7.5    6 14.3    9 11.0   

Math courses taken   8.60 3.77    8.70 4.20    8.65 3.97 
Education courses taken   4.24 4.81    2.87 2.65    3.54 3.89 
Years experience teaching math   11.95 6.38    12.42 7.02    11.93 6.35 
PD hours in math   24.88 30.94    23.65 17.61    24.25 24.86 
Note. SBI = schema-based instruction; PD = professional development; FRL = students eligible for free or reduced priced lunch; LEP 
= limited English proficiency; SpEd = students receiving special education services; Total student N = 1981 but some analyses were 
based on a smaller sample size because of missing data. 
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Table 2. 
 
Descriptive Statistics for Measures by Treatment 
 
 SBI  Control  Total 

n M SD  n M SD  n M SD 
PPS pretest 956 13.29 4.30  978 13.74 4.56  1934 13.52 4.44 
PPS posttest 943 16.52 5.27  955 15.09 4.92  1898 15.80 5.15 
PPS delayed 931 16.07 5.09  916 15.22 5.02  1847 15.65 5.07 
GMADE pretest 952 13.23 3.76  974 13.44 3.95  1926 13.33 3.86 
GMADE posttest 944 14.22 4.21  942 14.02 4.41  1886 14.12 4.31 
Note. SBI = schema-based instruction; PPS = proportional problem solving; GMADE = Group Mathematics Assessment and 
Diagnostic Evaluation.  All test statistics are based on the total number of items correct. 
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Table 3.  

Quality of Instruction and Fidelity of Implementation by Treatment 

 SBI  Control     

Measure n M SD  n M SD t df p ES 
Quality of Instruction            
    Sets lesson purpose 40 2.63 0.49  40 2.60 0.84 0.16 78 .871 0.04 
    Provides lesson closure 40 1.08 0.83  40 1.08 0.69 0.00 78 .999 0.00 
    Classroom management 40 2.88 0.34  40 2.78 0.66 0.86 78 .395 0.19 
    Mathematical errors 40 2.93 0.47  40 2.83 0.55 0.87 78 .386 0.20 
    Total score 40 9.50 1.28  40 9.28 1.71 0.66 78 .507 0.15 
Fidelity of Implementation            
    Identifies problem type 40 2.10 1.11  40 0.75 0.90 6.00 78 <.001 1.34 
    Problem similar/different 40 1.28 1.11  40 0.35 0.70 4.46 78 <.001 1.00 
    Identifies key information 40 2.50 0.75  40 1.95 0.85 3.08 78 .003 0.69 
    Estimates solution 40 2.18 1.04  40 0.18 0.55 10.80 78 <.001 2.40 
    Multiple solution strategies 40 1.93 0.89  40 1.35 0.86 2.94 78 .004 0.66 
    Provides complete solution 40 2.65 0.70  40 2.15 1.00 2.59 78 .011 0.58 
    Checks solution 40 1.70 0.91  40 0.70 0.94 4.83 78 <.001 1.08 
    Total score 40 14.33 3.86  40 7.43 3.00 8.82 78 <.001 2.00 
Note. SBI = schema-based instruction; Effect size (ES) was calculated as the two conditions’ mean difference divided by the pooled 

standard deviation (Hedges & Olkin, 1985).  Here 
 
α =

.15
13

= .0115
 
following the Dunn-Bonferonni procedure.
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Table 4. 
 
HLM Results for PPS Posttest 
 
Fixed Effects B SE t df p 
Between-Student Model 
Sex  0.22 0.18 1.20 1799 .231 
Asian 0.11 0.36 0.31 1799 .757 
Black -1.06 0.33 -3.23 1799 .002 
Hispanic -0.52 0.36 -1.44 1799 .150 
Pretest 0.68 0.03 27.64 1799 <.001 
Between-Classroom Model 
Intercept  15.35 0.79    
Treatment 1.70 0.32 5.38 72 <.001 
Sex -0.02 0.35 -0.05 72 .963 
Math courses -0.00 0.04 -0.11 72 .916 
Edu. courses -0.02 0.03 -0.59 72 .559 
Yrs. experience 0.04 0.03 1.30 72 .197 
PD hours 0.00 0.01 0.05 72 .963 
FRL  -0.23 0.15 -1.47 72 .145 
LEP -0.19 0.14 -1.41 72 .163 
Special edu. -0.02 0.10 -0.24 72 .809 

Random Effects VC SD χ2 df p 
Classroom 1.17 1.08 254.45 72 <.001 
Student 12.50 3.54    
Note. PD = professional development; FRL = eligible for free or reduced price lunch; LEP = 
limited English proficiency; VC = variance component. Here .05a=  for the test of the SBI 

effect and α = .10
14
= .0071 for tests of the remaining fixed effects. 
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Table 5. 
 
HLM Results for PPS Delayed Posttest 
 
Fixed Effects B SE t df p 
Between-Student Model 
Sex  0.17 0.21 0.79 1755 .430 
Asian 0.37 0.40 0.94 1755 .350 
Black -0.60 0.40 -1.52 1755 .128 
Hispanic -0.38 0.36 -1.05 1755 .293 
Pretest 0.67 0.03 26.72 1755 <.001 
Between-Classroom Model 
Intercept  15.07 0.64    
Treatment 1.22 0.29 4.17 70 <.001 
Sex 0.33 0.31 1.05 70 .296 
Math courses -0.01 0.04 -0.16 70 .877 
Edu. courses 0.02 0.03 0.89 70 .374 
Yrs. experience 0.04 0.02 1.86 70 .067 
PD hours -0.00 0.00 -0.40 70 .687 
FRL  -0.22 0.13 -1.74 70 .087 
LEP -0.19 0.13 -1.47 70 .147 
Special edu. -0.02 0.10 -0.22 70 .828 

Random Effects VC SD χ2 df p 
Classroom 0.76 0.87 178.24 70 <.001 
Student 13.64 3.69    
Note. PD = professional development; FRL = eligible for free or reduced price lunch; LEP = 
limited English proficiency; VC = variance component. Here .05a=  for the test of the SBI 

effect and α = .10
14
= .0071

 
for tests of the remaining fixed effects. 
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Table 6. 
 
HLM Results for GMADE Posttest 
 
Fixed Effects B SE t df p 
Between-Student Model 
Sex  0.10 0.18 0.52 1786 .600 
Asian 0.50 0.31 1.59 1786 .112 
Black -0.54 0.32 -1.72 1786 .086 
Hispanic -1.01 0.35 -2.87 1786 .005 
Pretest 0.52 0.03 17.65 1786 <.001 
Between-Classroom Model 
Intercept  14.50 0.57    
Treatment 0.39 0.30 1.31 72 .194 
Sex 0.02 0.32 0.05 72 .960 
Math courses -0.05 0.03 -1.72 72 .089 
Edu. courses 0.03 0.03 0.89 72 .378 
Yrs. experience 0.07 0.02 3.37 72 .002 
PD hours -0.00 0.00 -0.60 72 .549 
FRL  -0.21 0.12 -1.66 72 .102 
LEP -0.23 0.11 -2.09 72 .040 
Special edu. -0.14 0.10 -1.43 72 .156 

Random Effects VC SD χ2 df p 
Classroom 0.80 0.90 208.95 72 <.001 
Student 11.30 3.36    
Note. PD = professional development; FRL = eligible for free or reduced price lunch; LEP = 
limited English proficiency; VC = variance component. Here .05a=  for the test of the SBI 

effect and α = .10
14
= .0071

 
for tests of the remaining fixed effects. 
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Figure Caption 

Figure 1. Ratio, Proportion, and Percent of Change Diagrams  
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APPENDIX A 

Sample Excerpts from Scripts for Teaching Percent Problem Solving  

Fractions, Percents, and Decimals (Lesson 11) 

Problem: The circle graph depicts how Mary spends her time every day. It shows how many 
hours per day Mary spends on each of the following activities: sleeping, eating, going to school, 
completing homework, and hanging out with friends. 

 
 

A. What fraction of Mary’s time is spent sleeping and doing homework? 
B. What fraction of Mary’s total time is spent not going to school? 
C. When added together, which two activities did Mary spend 25% of her total time 

on? 
 
Teacher:  Let’s solve the problem using information in this circle graph. This graph tells how 

many hours Mary spends on each of the following activities: sleeping, going to 
school, eating, doing homework, and hanging out with friends. If we want to figure 
out a fractional expression of the amount of time that Mary spends sleeping and doing 
homework, we should first calculate the total number of hours, which is the base 
quantity. What is the total number of hours Mary spends on the different activities? 
Explain. 

 
Students: 24 hours. I added up all the hours Mary spends sleeping (8 hours), going to school (7 

hours), doing homework (4 hours), eating (2 hours), and hanging out with friends (3 
hours).   

 
Teacher: Right! 24 hours is the base quantity. That is also the number of hours in one day. And 

from the graph, we know that Mary spent 8 hours sleeping and 4 hours doing 
homework.  So 8 + 4 =12 hours is the compared quantity.  We can then write the ratio 
of time spent sleeping and doing homework to the total amount of time as 12:24. A 

Sleep%
8%

School%
7%

Hanging%out%
3%

Ea4ng%
2%

Homework%
4%

How$Mary$Spends$Her$Time$in$One$Day$
(Note:'Times'are'reported'in'hours)'
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ratio of 12:24 can be written in fraction form as 
12
24 . When we simplify the fraction 

12
24 , 

what do we get? 
 
Students:  1

2 . 
 
Teacher: How can we write  

1
2 as a percent?  

 
Students: We know that we can write  

1
2  in many different ways. One fraction that is equivalent 

to  
1
2  is 

50
100 . For 

50
100 , the denominator is 100, so we can write  

50
100  as 50%.  

 
Teacher: Next, we need to figure out what fraction of Mary’s total time is spent not going to 

school. (Think aloud) Let’s see … we know from just solving the question (11.6A) 
about the amount of time Mary spent sleeping and doing homework that the base 
quantity (total time spent on all activities) is 24. We need to find the compared 
quantity, which is the time spent not going to school. What is this amount? Explain. 

 
Students: 17 hours. With the exception of the hours spent going to school (i.e., 7 hours), I added 

the hours spent sleeping (8 hours), doing homework (4 hours), eating (2 hours) and 
hanging out with friends (3 hours).  So 8 + 4 + 2 + 3 = 17.   

 
Teacher:  So, 17 is our compared quantity, which is the time not spent going to school, and 24 

is the base quantity (i.e., the total time spent going to school and not going to school). 
We need to write this as a fraction. How would you write the amount of time spent 
not going to school to the total amount of time as a fraction? Explain. 

 
Students: We would write the compared quantity (numerator) over the base quantity 

(denominator) to get  
17
24 . 

 
Teacher:  Great! Now,  

17
24 cannot be simplified, so Mary spends  

17
24 of her time not going to 

school. Now, we are ready to solve the next question about which two activities Mary 
spends 25% of her time doing in one day. Let’s use these 4 steps (DISC) to solve this 
problem. To discover the problem type, I will read, retell, and examine information in 
the problem to recognize the problem type. (Read and retell the problem.) Now, I will 
ask myself if this is a percent problem. How do I know it is a percent problem? It’s a 
percent problem, because it tells about the percent of time Mary spends on a specific 
activity every day. The percent relationship describes a part-to-whole (time Mary 
spends doing each activity out of the total time of 24 hours) comparison.  

 
Now I will ask if this problem is different from/similar to another problem we have 
already solved. (Remind students of the ratio problems just solved.) It is similar to 
ratio problems we solved earlier, because it compares a part (i.e., the number of 
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hours) to the whole (total hours). However, it is different from those ratio problems, 
because the relation between the part-to-whole is expressed as a percent.  
 
(Point to Step 2 on the checklist.) Now we are ready to identify information in the 
problem to represent in a diagram(s). Let’s write the percent as a ratio in the diagram. 
Remember, a percent is any number that is compared to 100. The percent sign is just 
another way of saying that this is a ratio with 25 as the compared quantity and 100 as 
the base quantity.  So 25% is the same as 25:100 or  

25
100 .  It is also the same as 0.25, 

because 25 divided by 100 is 0.25. All three of these representations mean 25 (parts) 
out of 100 (whole). Let’s write  

25
100 for the ratio value in the diagram. Let’s write 

“number of hours Mary spent on two activities” for the compared and “total hours in 
the day” for the base quantity in the diagram. We reasoned earlier that “24 hours” 
(“total hours in the day”) is the base quantity.   

.... 

 
.... 
Teacher: (Point to Step 3 on the checklist.)  Now we are ready to solve the problem. Before we 

solve the problem, let’s first come up with an estimate for the answer. It is hard to 
come up with an estimate, but I do know a few things about the answer. I know that 
the answer is less than 24, because the total number of hours (whole) is 24, and the 
time Mary spent on the two activities is less than 100% of 24. And I know that 25% is 
less than 50%, and 50% or !

1
2

 is 12. So the answer should be less than 12. So looking 
at the circle graph, my estimate is that the answer is either 1, 2, 3 or 6 hours.  
 
Next, I will translate the information in the diagram into a math equation. From the 
diagram, we can set up the math equation to look like this (point to the equation.): 

  

x hours spent on two activities
24 total  hours 

=
25

100
 

 
Now I need to figure out what strategy to use to solve for the number of hours spent 
on the activity (which is x). You learned several strategies (i.e., unit rate, equivalent 
fractions, or cross multiplication) to solve ratio and proportion problems. What 
strategy would you use to solve for x in the problem? Explain. 

x	
Hours	spent	on	
two	activities	

	

Compared	

Base	

Part	

Whole	

Ratio		
value		

24	
Hours	in	a	day															
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Students: Unit rate strategy, because it works best with the numbers in the problem. 
 
Teacher:  Solve for the unknown or x in the equation using the unit rate strategy we identified in 

the plan step. When you use unit rate strategy, how do you set up the problem? Show 
all your work and explain. 

 
Students: 

  

x hours spent on two activities
24 total  hours 

=
25

100  
 

 
                  First, ask 25 times what number gives 100. The answer is 4 (i.e., 25 · 4 = 100). Then, 

we multiply x by 4 to get 4x = 24. So x  = 24 ÷ 4, which is 6.  
 
Teacher: So, 6 hours is our compared quantity. (Point to the circle graph.) From the circle 

graph, which two activities when you add together did Mary spend 6 hours on? 
 
Students: Mary spent 6 hours doing homework and eating. 
 
Teacher: Good. Let’s write 6 for “x” in the diagram and write the complete answer on the 

answer line. What is the complete answer?  
 
Students: Mary spent 6 hours doing homework and eating. 
 
Teacher: Good. What do you do next? (Point to Step 4.)  

Students: Check if the answer makes sense. 

Teacher:  To check the solution, what must you do first?  

Students: Look back to see if our estimate in Step 3 is close to the exact answer. 

Teacher: We estimated our answer to be less than 12 hours. The answer to this problem is 6. 
So, your estimate did a nice job of giving us a ballpark sense of what the answer 
should be. Now check to see if the answer makes sense. Does 6 seem right? Explain. 

 
Students: We know that if 24 hours represent 100% of the total time in Mary’s day, then 6 

hours going to school out of 24 hours seems right. The answer of 6 hours doing 
homework and eating seems right, because this is less hours (6) than the total number 
of hours in a day (24).  

 
Teacher:  You can also check the ratio 6:24 to see if this value is equal to the ratio 25:100. 

When you simplify both ratios (i.e., using your calculator, divide the numerator by 
the denominator), you get !

6
24

 (0.25), which tells me that they are equivalent. 
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Solving Percent Word Problems: Percent of Change (Lesson 14) 

Problem: There is great variation between day and night temperatures in summer in the deserts 
of Rajasthan, India. Find the percent of change in degrees Fahrenheit in the deserts of Rajasthan 
from 120°F in the daytime on May 5, 2006, to 84°F that night. 
 
Teacher:  Let’s use these 4 steps (DISC) to solve this problem. To discover the problem type, I 

will read, retell, and examine information in the problem to recognize the problem 

type. (Read and retell the problem.) How do you know if this is a percent problem?  

Students: It’s a percent problem, because it tells about the percent of change in degrees 
Fahrenheit from day to night.  

 
Teacher: Is this problem different from/similar to another problem you have solved? This 

problem is similar to the percent of change problems (e.g., plant growth, allowance, 
weight loss) we solved yesterday, because it compares the change to the original 
amount, but is different in that it describes the percent of change in degrees 
Fahrenheit from day to night. In this temperature problem, we are given the degrees 
Fahrenheit during the day (original) and night (new) and asked to find the percent of 
change in degrees Fahrenheit from day to night in Rajasthan, India.  

 
 (Point to Step 2 on the checklist.) Now we are ready to identify information in the 
problem to represent in the diagrams.  

 .... 

 

 .... 

Compare
d	

Base	

Ratio 
value  

Change	

Original	 120°F	
	

?°F	
	

	

&	

New	Original	 Change  

120°F	
	

?	°F	
	

84°F	
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Teacher: Now we are ready to solve the problem. To solve the problem, we need to come up 
with an estimate for the answer. What is the estimate of the percent of change in 
degrees Fahrenheit in the deserts of Rajasthan from 120°F in the daytime on May 5, 
2006 to 84°F that night? 

   
Students: It is hard to come up with an estimate, but I do know a few things about the answer. I 

know that the degrees Fahrenheit changed about 30 or 40 degrees, from 120° down 
to 84°. If the degrees Fahrenheit had changed 60°, this is half of 120°, so this would 
be 50% change. So I would estimate the answer to be close to 50%, perhaps larger 
than 25%.  So I think the percentage of change will be greater than 25%, but less 
than 50%.  

 
Teacher:  Excellent! What do you do next?  
 
Students: Translate the information in the diagram into a math equation. 
 
Teacher:  Before we translate the information, look at both diagrams and tell me what we don’t 

know.  
 
Students: We don’t know the change amount, and we don’t know the percent of change. 
Teacher: Great. So which one should we figure out first? Why? 
 
Students: You can’t figure out the percent of change until you find the change amount. So, we 

first need to solve for the change amount. 
 
Teacher: How would you solve for the change amount. 
 
Students: We can solve for the “?” in the change diagram to find the change amount. 
 
Teacher: What do you have to do with 120 to get 84? Explain 
 
Students: Subtract 36, because there is a decrease in degrees Fahrenheit.  
 
Teacher: Cross out the “?” and write -36 in the triangle for the Change diagram. This tells us 

that the change is a decrease.  
  

 
 

Now remember that this change amount appears in both diagrams, so let’s also cross 
out the “?” in the Ratio diagram and write 36. Let’s look at the Ratio diagram, which 
shows a model of the problem situation. (Point to the diagram below.) What must you 
solve for in this problem? 

&	

New	Original	 Change 
Chan

120°F	
	

84°F		
	

?	°F	
	

-	36	
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Students: The percent of change.  
 

Teacher: You can solve for x and find the percent of change (i.e., percent of decrease) using 
the Ratio diagram. Now, you can translate the information in the diagram into a math 
equation. From the diagram, show how you would set up the math equation. 

 

Students: 36°F
120°F

= x 
100

 

 
Teacher: Now you need to figure out what strategy (e.g., cross multiplication, unit rate, 

equivalent fractions) to use to solve for x. What strategy would you use to solve for x? 
Explain. 

 
Students: Cross multiplication, because it works well with the numbers in the problem. 
 
Teacher:  Now solve the math equation and show all the steps. (Point to the equation.)  

36°F
120°F

= x 
100

 

 
Students: The first step is to cross multiply, which yields: 

120 · x = 36 · 100 
or 

120x  = 3600 
 The second step is to solve for x, which is the percent of change in degrees 

Fahrenheit from day to night. To solve this equation for x, we need to divide both 
sides of the equation by 120. So 3600 ÷ 120 is 30, which is the answer. I solved for x, 
which is 30 (i.e., a 30% decrease in degrees Fahrenheit in the Rajasthan desert from 
day to night).  

 

Compared	

Base	

Change	

Original	

Ratio  
value  

		
120°F												

	

	
	

?°F	
	

36°F	
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Teacher: Now we know the percent of change (x), which is 30. Write 30 for “x” in the diagram. 
The problem asks us to find the percent of change. Does anyone know how to write

!
30
100  as percent?  

 
Students:  30%. 
 
Teacher: So what is the complete answer to this problem? 
 
Students: The percent of change in degrees Fahrenheit is 30% 
 
Teacher: That’s right! This percent of change is a decrease in degrees Fahrenheit. Write “The 

percent change in degrees Fahrenheit from day to night is 30%” on the answer line. 
Writing the answer in complete form helps to describe exactly what your answer 
means. What do you do next? (Point to Step 4.) 

  
Students: Check if the answer makes sense. 
 
Teacher:  To check the solution, what must you do first?  
 
Students: Look back to see if our estimate is close to the exact answer 
 
Teacher: We estimated our answer to be between 25% and 50%. Let’s check to see if our 

estimate is close to the exact answer. What is the correct answer?  
 
Students: 30%. 
 
Teacher: So, your estimate (between 25% and 50%) is a good prediction because it is in the 

ballpark of the exact answer (30%). What do you do next? 
 
Students: Check if the answer makes sense. 
 
Teacher: Does 30% seem right? Explain. 
 
Students: We know that if 120°F represents 100%, then the change in temperature of 36°F 

seems right, because the change involves a decrease of the original temperature 
(120°F).  

 
Teacher:  You can also check the ratio 36:120 to see if this value is equal to the ratio 30:100. 

When you use a calculator and divide the numerator by the denominator, you get 
0.30, which tells me that they are equivalent. Let’s review this percent of change 
problem. What is this problem called? Why? 

 
Students:  It is a percent change problem, because it involves a comparison of the change 

amount to the original amount. The new amount (degrees Fahrenheit at night) is a 
decrease of the original amount (degrees Fahrenheit in the daytime), so the change 
involves a decrease. 
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APPENDIX B 

Sample Items from the Proportional Problem Solving Test  

1.  The weight of an object on the Moon is 
 

1
6

the weight of that object on the Earth. An object 

that weighs 30 pounds on Earth would weigh how many pounds on the Moon?  
 

A.   10 pounds 
B.   11 pounds 
C.   12 pounds 
D.   13 pounds 
 

 
2. At the school carnival, Carmen sold 3 times as many hot dogs as Shawn. The two of them 

together sold 152 hot dogs. How many hot dogs did Carmen sell? 

A.  38 
B.  51 
C.  114 

 
3. A club held a car wash and washed 21 cars. If the club raised $84, how much did it charge 

per car? 
 

A.      $0.25 
B.      $4.00 
C.      $5.00 
D.      $4.50 

 
4. If there are 300 calories in 200 g of a certain food, how many calories are there in a 40 g 

portion of this food? 

A. 60 

B. 26 2
3

 

C. 6 
D. 140 

 
5. A machine uses 2.4 liters of gasoline for every 30 hours of operation. How many liters of 

gasoline will the machine use in 100 hours? 
 

A. 7.2 

B. 8.0 

C. 8.4 
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6. Marcel’s drawing of an ant is 4 1
2 inches long.  His drawing is 12 times the ant’s actual size.  

How long is the actual ant? 
 

A. 
 

1
3

inch 

B. 
 

3
8

inch 

C. 
 

1
2

inch 

D. 
 

8
3

inch 

 
 
7. Some classmates compared their scores on a recent math test. 

• Molly answered 15 out of every 20 questions correctly. 
• Brittany answered 7 out of every 8 questions correctly. 
• Desiree answered 7 out of every 10 questions correctly. 
• Nick answered 4 out of every 5 questions correctly 

 
Which student answered more than 80% of the questions correctly? 

A.  Molly 
B.  Brittany 
C.  Desiree 
D. Nick 

 
 

8. If the price of a can of beans is raised from 50 cents to 60 cents, what is the percent 
increase in the price? 

A. 83.3% 
B. 20.0% 
C. 16.7% 
D. 10.0% 

 

9. Taylor was earning an income of $1,000 a week. Then his income was reduced by 10%. 
Two months later, his income increases by 10%. How much is Taylor earning, in dollars, 
after his income increases? 

A. $990 
B. $1,000 
C. $1,100 
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10.	 Jill and Dushawn joined a book club in middle school. The picture below shows how many books 
 

Jill and Dushawn each read in September and December. In September, Jill read 5 books and 
 

Dushawn read 6 books. In December, Jill read 8 books and Dushawn read 9 books. 
	
	
	

	 September	 	 December	

	

Ji
ll
	

	

	

Ji
ll
	

	

	

D
u
sh
aw

n
	

	

	

D
u
sh
aw

n
	

	

	
	

Dushawn thinks that the amount of books he and Jill read from September to December is the 
 

same. Use mathematics to explain how Dushawn might have justified his claim. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jill thinks that she has read more books than Dushawn from September to December. Use 

mathematics to explain how Jill might have justified her claim. 

 


